Mathematical Heritage
1.Quick Squaring
2.Quick Square Roots
3.Quick Cube
4.Cube Roots
5.Finding the last digit
6.Divisibility rules of Some intergers
7.Game of Mathematics
Please download this book to read more
Mathematical Heritage
1.Quick Squaring
2.Quick Square Roots
3.Quick Cube
4.Cube Roots
5.Finding the last digit
6.Divisibility...
Math world
Five Hundred Mathematical Challenges,Complex Numbers From A to … Z ,
Mathematical Olympiad in China,Mathematical Olympiad Challenges,
Mathematical Olympiad Treasures, International Mathematical Olympiads
Math world
Five Hundred Mathematical Challenges,Complex Numbers From A to … Z ,
Mathematical Olympiad in China,Mathematical Olympiad...
1. Pierre Bornsztein, Inégalité, 2001
2. Hojoo Lee, Topic in Inequalities-Theorems and Techniques
3. A.I Prilepko, Problem Book in High-School Mathematics,
MIR Moscow, 1985
4. D.O. Shklarsky, N.N. Chentzov, I. M. Yaglom,
The USSR Olympiad Problem Book, Dover Publications, INC. New York, 1993.
5. Dusan Djukic, Vladimir Jankovic, Ivan Matic, Nikola Petrovic,
The IMO Compendium, Springer, 2006
6. GS. PHAN ÐỨC CHÍNH, 101 Bài Toán Chọn lọc, Nhà Xuất Bản Trẻ,1996
7. Tuyển Tập Ðề thi olympic 30-4,Môn Toán, Nhà Xuất Bản Giáo Dục, 1999.
8. Pierre Bornsztein, Moubinool Omarjee, Cours- Equations Fonctionnelles, 2003
1. Pierre Bornsztein, Inégalité, 2001
2. Hojoo Lee, Topic in Inequalities-Theorems and Techniques
3. A.I Prilepko, Problem...
1. Pierre Bornsztein, Xavier Caruso, Pierre Nolin, Mehdi Tibouchi,
Inégalité Cours d’Arithmétique, 2004
2. David A. Santos, Number Theory for Mathematical Contests, 2005
3. D.O. Shklarsky, N.N. Chentzov, I. M. Yaglom,
The USSR Olympiad Problem Book, Dover Publications, INC. New York, 1993.
4. Dusan Djukic, Vladimir Jankovic, Ivan Matic, Nikola Petrovic,
The IMO Compendium, Springer, 2006
5. Dan Brânzei, Ioan Şerdean, Vasile Şerdean,
Junior Balkan Mathematical Olympiads, Plus Publishing House, 2003
1) Polynomials in One Variable ( Duˇsan Djuki´c )
2) Australian Mathematical Olympiads 1979-1995.
3) Romanian Mathematical...
1. 101 problems in Algebra
( Titu Andreescu & Zuming Feng)
2. Selected Problems of the Vietnamese Mathematical
Olympiad (1962–2009) ( Le Hai Chau & Le Hai Khoi )
3. TOPICS IN INEQUALITIES ( Hojoo Lee )
4. Mathematical Olympiad in China
(Xiong Bin & Lee Peng Yee )
5. Lecture Notes on Mathematical Olympiad Courses
( Xu Jiagu )
6. INFINITY
(Hojoo Lee, Tom Lo
7. Secrets in Inequalities
(PHAM KIM HUNG)
1. 101 problems in Algebra
( Titu Andreescu & Zuming Feng)
2. Selected Problems of the Vietnamese Mathematical
Olympiad...
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in China,Mathematical Olympiad
Challenges, Mathematical Olympiad Treasures, International
Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 ) , 360 Problems for Mathematical
contest....
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in...
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in China,Mathematical Olympiad
Challenges, Mathematical Olympiad Treasures, International
Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 ) , 360 Problems for Mathematical
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in...
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in China,Mathematical Olympiad
Challenges, Mathematical Olympiad Treasures, International
Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 ) , 360 Problems for Mathematical
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in...
International Mathematical Olympiad
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in China,Mathematical Olympiad
Challenges, Mathematical Olympiad Treasures, International
Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 ) , 360 Problems for Mathematical
International Mathematical Olympiad
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A...
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in China,Mathematical Olympiad
Challenges, Mathematical Olympiad Treasures, International
Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 ) , 360 Problems for Mathematical
103 Trigonometry
Problems , Five Hundred Mathematical Challenges,Complex Numbers From
A to … Z , Mathematical Olympiad in...
1. 360 Problems for Mathematical Contest
(By Titu Andreescu , Dorin Andrica )
2. 103 Trigonometry Problems
(From the training of the USA IMO Team)
3. Five Hundred Mathematical Challenges
(By Edward J. Bar beau, Murray S. Klamkin)
4. Complex Numbers From A to … Z
(By Titu Andresscu , Dorin Andrica )
5. Mathematical Olympiad in China
6. Mathematical Olympiad Challenges
(By Titu Andresscu & Razvan Gelca)
7. Mathematical Olympiad Treasures
(By Titu Andreescu , Bogdan enescu )
8. International Mathematical Olympiads
1959-1977
( Samuel L. Greitzer )
9. The IMO Compendium ( 1959-2004 )
1. 360 Problems for Mathematical Contest
(By Titu Andreescu , Dorin Andrica )
2. 103 Trigonometry Problems
(From the training...
1-360 Problems for Mathematical Contests
2-103 Trigonometry Problems
3-Complex Number from A to Z
4-Mathematical Olympiad in China
5-The IMO Compendium
1-360 Problems for Mathematical Contests
2-103 Trigonometry Problems
3-Complex Number from A to Z
4-Mathematical Olympiad...
1. 360 Problems for Mathematical Contest
(By Titu Andreescu , Dorin Andrica )
2. 103 Trigonometry Problems
(From the training of the USA IMO Team)
3. Five Hundred Mathematical Challenges
(By Edward J. Bar beau, Murray S. Klamkin)
4. Complex Numbers From A to … Z
(By Titu Andresscu , Dorin Andrica )
5. Mathematical Olympiad in China
6. Mathematical Olympiad Challenges
(By Titu Andresscu & Razvan Gelca)
7. Mathematical Olympiad Treasures
(By Titu Andreescu , Bogdan enescu )
8. International Mathematical Olympiads
1959-1977
( Samuel L. Greitzer )
9. The IMO Compendium ( 1959-2004 )
1. 360 Problems for Mathematical Contest
(By Titu Andreescu , Dorin Andrica )
2. 103 Trigonometry Problems
(From the training...
103 Trigonometry Problems ,
Five Hundred Mathematical Challenges,Complex Numbers From A to … Z ,
Mathematical Olympiad in China,Mathematical Olympiad Challenges,
Mathematical Olympiad Treasures, International Mathematical Olympiads 1959-1977,
The IMO Compendium ( 1959-2004 )